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Abstract. We construct asymptotically the solutions to a classical reaction–diffusion system (the
Gray–Scott model of an autocatalytic reaction) in the form of static spike autosolitons (self-sustained
solitary pulses, spots and clots). We show that solutions in the form of static spike autosolitons exist
over a wide range of system parameters in one dimension, and in a narrower range of parameters
in two and three dimensions. We study the properties of these solutions.

1. Introduction

Self-organization and pattern formation in non-equilibrium systems are among the most
fascinating phenomena in nonlinear physics [1–11]. Pattern formation is observed in
various physical systems including fluids; gas and electron–hole plasmas; semiconductor,
superconductor and gas-discharge structures; some ferroelectric, magnetic and optical media;
combustion systems (see, for example, [5, 9–14]), as well as in many chemical and biological
systems (see, for example, [1–7, 15]).

Self-organization is often associated with the destabilization of the homogeneous state
of the system [1, 2, 5, 10, 11]. At the same time, when the homogeneous state of the system
is stable, one can excite large-amplitude patterns, including autosolitons (ASs; self-sustained
solitary inhomogeneous states) by applying a sufficiently strong localized perturbation [8–
11, 16–19]. Autosolitons are elementary objects in open dissipative systems away from
equilibrium. They share properties of both solitons and travelling waves (or autowaves, as
they are also referred to [2, 6]). They are similar to solitons since they are localized objects
whose existence is due to the nonlinearities of the system. On the other hand, from the physical
point of view they are essentially different from solitons in that they are dissipative structures,
that is, they are self-sustained objects which form in strongly dissipative systems as a result of
the balance between the dissipation and pumping of energy or matter. This is the reason why, in
contrast to solitons, their properties are independent of the initial conditions and are determined
primarily by the nonlinearities of the system [8–11]. ASs can be static, pulsating or travelling.
As a result of their various instabilities, these simplest localized patterns can spontaneously
transform into complex space-filling static or dynamic patterns, including complex pulsating
and travelling patterns, or spatio-temporal chaos [8–14, 18–33].
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A prototype model used to study pattern formation in non-equilibrium systems is a pair
of reaction–diffusion equations of the activator–inhibitor type,

τθ
∂θ

∂t
= l2�θ − q (θ, η,A) (1.1)

τη
∂η

∂t
= L2�η − Q(θ, η,A) (1.2)

where θ is the activator, η is the inhibitor, τθ , l and τη, L are the time and length scales of the
activator and the inhibitor, respectively; A is the control (bifurcation) parameter; q and Q are
certain nonlinear functions representing the activation and the inhibition processes. Examples
of these equations for various physical systems are given in [9–13, 25] where the physical
meaning of the variables θ and η and the nature of the activation and the inhibition processes
are discussed.

The fact that θ is the activator means that for certain parameters the uniform fluctuations
of θ will grow when the value of η is fixed. From the mathematical point of view, this is given
by the condition [9–11, 18]

∂q

∂θ
< 0 (1.3)

for certain values of θ and η. On the other hand, the fact that η is the inhibitor means that
its own fluctuations decay and that it damps the fluctuations of the activator. Mathematically,
these conditions are expressed by [9–11, 18]

∂Q

∂η
> 0

∂q

∂η

∂Q

∂θ
< 0 (1.4)

for all values of θ and η, provided that the derivatives in equation (1.4) do not change sign.
Kerner and Osipov showed [8–11, 16–18, 25] that the properties of patterns and self-

organization scenarios in systems described by equations (1.1) and (1.2) are chiefly determined
by the parameters ε ≡ l/L and α ≡ τθ/τη and the shape of the nullcline of the equation for the
activator, that is, the dependence η(θ) given by the equation q(θ, η,A) = 0 for A = constant.
They demonstrated that depending on the shape of the activator nullcline the majority of
systems can be divided into two fundamentally different classes: N-systems, for which the
nullcline is N- or inverted N-shaped and, �- or V-systems, for which the nullcline is �- or
V-shaped, respectively (see figure 1).

Let us emphasize that smallness of ε and/or α is a necessary condition for the feasibility
of any patterns [9–11]. Indeed, if both the characteristic time and length scales of the variation

Figure 1. Two qualitatively different types of the nullclines of equations (1.1) and (1.2): (a)
N-systems and (b) �-systems.



Static spike autosolitons in the Gray–Scott model 8895

of the inhibitor were much smaller than those of the activator, the inhibitor would easily damp
all the deviations of the activator from the homogeneous steady state, making the formation
of any kind of persistent patterns impossible.

Most works devoted to the description of pattern formation on the basis of equations (1.1)
and (1.2) deal with N-systems. For these models it was shown [27] that equations (1.1) and
(1.2) with L = 0 and α � 1 have solutions in the form of travelling waves (also called
autowaves [2, 6], or travelling ASs [8–11]). In [16–19] it was shown that in another limit
ε � 1 equations (1.1) and (1.2) admit solutions in the form of the static patterns including ASs
[16–19], see also [9–11]. Furthermore, it was shown that in systems with ε � 1 and α � 1
one can excite static, pulsating, and travelling patterns [8–11, 18, 25, 28–33]. In N-systems
with ε � 1 static ASs and other patterns are essentially domains of high and low values of the
activator separated by interfaces (walls) in which θ varies sharply by a quantity of the order of
one over a distance of the order of l. The characteristic size Ls of these domain patterns lies
in the range l � Ls � L [9–11, 17–21].

At the same time, there are many physical, chemical and biological systems for which
the activator nullcline is �- or V-shaped (figure 1(b)) [1, 9–12, 16, 25, 34, 35]. Kerner and
Osipov showed qualitatively that in �-systems the so-called spike ASs and more complex
spike patterns can be excited [9, 11, 16, 36, 37]. They analysed the static spike ASs and strata
in the Brusselator, the Gierer–Meinhardt model and the electron–hole plasma [16, 36]. They
found that when ε � 1, the one-dimensional static spike AS can have a small size of the
order of l and a huge amplitude which goes to infinity as ε → 0. Dubitskii, Kerner and
Osipov formulated the asymptotic procedure for finding the stationary solutions in �-systems
for sufficiently small ε [11, 36]. Recently, we showed that in another limiting case α � 1
and ε � 1, one can excite the one-dimensional travelling spike AS, which also has small
size and whose amplitude goes to infinity as α → 0 [38]. Osipov and Severtsev studied one-
dimensional static spike ASs in the linearized version of the Gray–Scott model [39] and in
the Gierer–Meinhardt model in higher dimensions [40]. One can see that the properties of the
spike patterns forming in �-systems differ fundamentally from those of the domain patterns
forming in N-systems. At the same time, spike patterns including spike ASs are observed
experimentally in nerve tissue [41], chemical reactions [5, 42], electron–hole plasma [43],
gas-discharge structures [44], as well as numerically in the simulations of the Brusselator, the
Gierer–Meinhardt and the Gray–Scott models [1, 26, 34, 45].

In this paper we present an asymptotic study of the static spike ASs in the Gray–Scott
model of an autocatalytic chemical reaction. We chose the Gray–Scott model because it has
the advantage having relatively simple nonlinearities, which in many cases allow us to obtain
explicit analytic results. Also, because of this one can expect a certain degree of universality of
pattern formation exhibited by it. We will study the static spike ASs in the Gray–Scott model
with ε � 1 in one, two and three dimensions.

The outline of our paper is as follows. In section 2 we introduce the model we will study,
in section 3 we construct the solutions in the form of the one-dimensional static spike AS; in
section 4 we construct the solution in the form of the three-dimensional radially symmetric
static spike AS; in section 5 we do that for the two-dimensional radially symmetric static
spike AS; in section 6 we discuss recent works of other authors on the Gray–Scott model and
compare their results with ours, and in section 7 we draw conclusions.

2. The model

The Gray–Scott model describes the kinetics of a simple autocatalytic reaction in an unstirred
flow reactor. The reactor is a narrow space between two porous walls. Substance Y whose
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concentration is kept fixed outside of the reactor is supplied through the walls into the reactor
with rate k0 and the products of the reaction are removed from the reactor with the same rate.
Inside the reactor Y undergoes the reaction involving an intermediate species X:

2X + Y
k1→ 3X (2.1)

X
k2→ inert. (2.2)

The first reaction is a cubic autocatalytic reaction resulting in self-production of species X;
therefore, X is the activator species. On the other hand, the production of X is controlled by
species Y , so Y is the inhibitor species. The equations of chemical kinetics which describe the
spatiotemporal variations of the concentrations of X and Y in the reactor and take into account
the supply and removal of the substances through the porous walls take the following form
[35]:

∂X

∂t
= −(k0 + k2)X + k1X

2Y + DX�X (2.3)

∂Y

∂t
= k0(Y0 − Y ) − k1X

2Y + DY�Y (2.4)

where nowX andY are the concentrations of the activator and the inhibitor species, respectively,
Y0 is the concentration of Y in the reservoir, � is the two-dimensional Laplacian, and DX and
DY are the diffusion coefficients of X and Y .

In order to be able to understand various pattern formation phenomena in a system of this
kind, it is crucial to introduce the variables and the time and length scales that truly represent
the physical processes acting in the system. The first and the most important is the choice
of the characteristic time scales. These are primarily dictated by the time constants of the
dissipation processes. For Y this is the supply and removal at a rate of k0, whereas for X this
is the removal from the system and the decay via the second reaction with the total rate k0 + k2.
The natural way to introduce the dimensionless inhibitor concentration is to scale it with Y0.
Since we want to fix the time scale of variation of the inhibitor (with the fixed activator), we
will rescale X in such a way that the reaction term in equation (2.4) will generate the same time
scale as the dissipative term. This leads to the following positive dimensionless quantities:

θ = X/X0 η = Y/Y0 X0 =
(
k0

k1

)1/2

. (2.5)

The characteristic time and length scales for these quantities are

τθ = (k0 + k2)
−1 τη = k−1

0 (2.6)

l = (DXτθ )
1/2 L = (

DYτη
)1/2

. (2.7)

If we now write equations (2.3) and (2.4) in the dimensionless form, we will arrive at the
following set of equations:

τθ
∂θ

∂t
= l2�θ + Aθ2η − θ (2.8)

τη
∂η

∂t
= L2�η − θ2η + 1 − η (2.9)

where we have introduced a dimensionless parameter

A = Y0k
1/2
0 k

1/2
1

(k0 + k2)
. (2.10)
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Figure 2. The nullclines of equations (2.8) and (2.9) for (a) A = 1 and (b) A = 3.

One can see from equations (2.8) and (2.9) that τθ and τη are, in fact, the characteristic time
scales, and l and L the characteristic length scales of variation of small deviations of θ and η

from the stationary homogeneous state θ = θh and η = ηh:

θh = 0 ηh = 1. (2.11)

Thus, the system is characterized by only three dimensionless parameters: α ≡ τθ/τη,
ε ≡ l/L and A. As can be seen from equation (2.8), the parameter A is the dimensionless
strength of the activation process, that is, it describes the degree of deviation of the system
from thermal equilibrium. With all of this, equations (2.8) and (2.9) are reduced to the form of
equations (1.1) and (1.2). Note that the system given by equations (2.8) and (2.9) is indeed a
system of the activator–inhibitor type: the condition in equation (1.3) is satisfied for θ > 1

2Aη
,

and the conditions in equation (1.4) are satisfied with ∂q/∂η < 0 and ∂Q/∂θ > 0 for all θ > 0
and η > 0.

The nullclines of equations (2.8) and (2.9) are shown in figure 2. From this figure one
can see that the nullcline of the equation for the activator has a degenerate �-form. It consists
of two separate branches: θ = 0 and 1/Aη. Note that adding an extra small constant term
on the right-hand side of equation (2.8) (which physically would correspond to some finite
concentration of substance X in the reservoir), one can remove this degeneracy of the nullcline
and make the nullcline truly �-shaped.

One can easily check that for 0 < A < 2 there is only one stationary homogeneous state
given by equation (2.11), whereas for A > 2 two extra stationary homogeneous states exist

θh2,3 = A ∓ √
A2 − 4

2
ηh2,3 = A ± √

A2 − 4

2A
. (2.12)

The stability analysis of these homogeneous states shows that for ε � 1 or α � 1 the
homogeneous state θ = θh2, η = ηh2 is always unstable. For ε � 1 the homogeneous
state θ = θh3, η = ηh3 is unstable with respect to the Turing instability if A < 0.41ε−1.
For α � 1 it is unstable with respect to the homogeneous oscillations (Hopf bifurcation) if
0.41α−1/2 < A < α−1/2, or it is an unstable node if A < 0.41α−1/2. On the other hand,
the homogeneous state θ = θh, η = ηh is stable for all values of the system’s parameters.
The latter is simple to understand: in order for the reaction to begin there has to be at least
some amount of activator put in at the start. Equivalently, the fact that the homogeneous state
in equation (2.11) is stable for all values of the parameter A (for an arbitrary deviation from
thermal equilibrium) is the consequence of the degeneracy of the nullcline of equation (2.8).
Thus, self-organization associated with the Turing instability of the homogeneous state θh = 0
and ηh = 1 is not realized in the Gray–Scott model. In such a stable homogeneous system
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any inhomogeneous pattern, including the ASs, can only be excited by a sufficiently strong
localized stimulus. In turn, self-organization will occur as a result of the instabilities of the
large-amplitude patterns already present in the system.

In the case of ε � 1 and α � 1 the largest length scale in the system is L and the longest
time scale is τη, so it is natural to scale length and time with L and τη, respectively. In these
units equations (2.8) and (2.9) take the following form:

α
∂θ

∂t
= ε2�θ + Aθ2η − θ (2.13)

∂η

∂t
= �η − θ2η + 1 − η. (2.14)

We will assume that the problem is defined on the sufficiently large domain with zero flux
boundary conditions. Note that the kinetic model used to arrive at equations (2.13) and (2.14)
imposes a restriction α � 1 (see equation (2.6)). Also, in the derivation we assumed that
the system is essentially two dimensional. For the sake of generality, in the following we
will allow α to take arbitrary values and will work with an arbitrary dimensional Gray–Scott
model.

3. One-dimensional static spike autosoliton

Let us now study the simplest possible stationary pattern in the Gray–Scott model—the static
spike AS. According to the general qualitative theory, these ASs form in �-systems when
ε � 1 [9–11, 16]. We begin with the analysis of the one-dimensional static spike AS. In the
Gray–Scott model it is described by the following equations:

ε2 d2θ

dx2
+ Aθ2η − θ = 0 (3.1)

d2η

dx2
− θ2η + 1 − η = 0. (3.2)

Since ε � 1, there is a strong separation of length scales in the AS [9–11, 16]. One can
separate the spike region where the distribution of θ varies on a length scale of ε, and the
periphery of the AS where η decays to the homogeneous state ηh = 1 on a length scale of the
order of unity. One can use this separation of length scales to construct a singular perturbation
theory which describes the distributions in the form of the static one-dimensional spike AS
[36]. However, before we do that, it is instructive to use a more qualitative approach which
will give us an idea concerning the scaling of the main parameters of the AS and its qualitative
shape. As will be seen below, this approach works when ε1/2 � A � 1.

3.1. Case A ∼ ε1/2: autosoliton collapse

According to this approach [9–11, 16], one assumes that the value of η inside the spike (on
a length scale of ε) is close to a constant value ηs . This is a reasonable assumption as long
as η � ε in the spike since the characteristic length scale of variation of η is 1. Then,
equation (3.1) with η = ηs can be solved exactly. Its solution has the form

θ(x) = θm cosh−2
( x

2ε

)
with θm = 3

2Aηs

. (3.3)
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On the other hand, the distribution of θ given by equation (3.3) acts in equation (3.2) as a
δ-function, so away from the spike the distribution of η is given by

η(x) = 1 − 3ε

ηsA2
e−|x|. (3.4)

Now, matching this solution for η(x)with the condition that η(0) = ηs , we obtain the following
expressions:

θm = 3A

A2
b


1 ±

√
1 − A2

b

A2


 ηs = A2

b

2A2


1 ±

√
1 − A2

b

A2




−1

(3.5)

where

Ab =
√

12ε. (3.6)

Note that equation (3.6) was obtained independently in [46] by applying Melnikov analysis to
equations (3.1) and (3.2). Similar results for the simplified version of the Gray–Scott model
were obtained in [39].

From equation (3.5) one can see that at A < Ab the solution in the form of the spike AS
does not exist. When A > Ab there are two solutions: the one corresponding to the plus sign
has a larger amplitude and the one corresponding to the minus sign has smaller amplitude.
As was shown by Kerner and Osipov, the solutions that have a smaller amplitude are always
unstable [9–11], so the only interesting solution corresponds to the plus sign in equation (3.5).
This solution is precisely the static spike AS. The numerical simulations of equations (2.13)
and (2.14) show that if the value of A is lowered, at A = Ab a stable one-dimensional static
spike AS collapses into the homogeneous state [47].

Let us look more closely at the parameters of the static spike AS and the conditions
of validity of the approximations made in the preceding paragraphs. As can be seen from
equations (3.3) and (3.4), the distribution of the activator indeed has a form of the spike whose
characteristic width is of the order of ε, and the distribution of the inhibitor varies on the much
larger length scale of the order of unity. Also, according to equation (3.5), the amplitude of
the spike at A close to Ab is of the order of ε−1/2 � 1 (and can, in fact, have huge values as ε

becomes smaller) and grows as the value of A increases. At A ∼ 1 the amplitude θm ∼ ε−1.
These features differ fundamentally, the ASs forming in �-systems from the ASs in N-systems.

Recall that in the derivation we have neglected the variation of the inhibitor inside the
spike. Since the characteristic length of variation of η is of the order of unity, this means
that the value of η = ηs in the centre of the AS must be much greater than ε. According to
equation (3.5), this is indeed the case as long as A � 1, so the solution obtained above is a good
approximation to the actual solution in this case. Also, in this case one can easily calculate the
distribution of η in the spike. To do this, we note that, according to equation (3.5), for A � 1
we have θ2η � 1 in the spike, so the last two terms in equation (3.2) can be neglected. Since
the variation of η in the spike is much smaller compared with ηs , we can also put η = ηs there.
Then, substituting θ from equation (3.3) into this equation, after simple integration we obtain
an expression for η in the spike region

η(x) = ηs +
4ε2θ2

mηs

3

(
2 ln cosh

x

2ε
+

1

2
tanh2 x

2ε

)
. (3.7)
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3.2. Case A ∼ 1: local breakdown

On the other hand, according to equations (3.5), when A ∼ 1, we have

θmax ∼ ε−1 ηmin ∼ ε (3.8)

and the approximation used by us ceases to be valid. However, it is clear that qualitatively
the character of the solution should not change even for these values of A. Therefore, we can
still assume that the spike of the AS has a width of the order of ε and that the values of the
activator and the inhibitor scale in the same way as those in equation (3.8). With all this in
mind, we are now able to introduce singular perturbation expansion and separate the ‘sharp’
distributions (inner solutions) that vary on the length scale of ε and the ‘smooth’ distributions
(outer solutions) that vary on the length scale of the order of unity.

At distances much greater than ε away from the spike (in the outer region) the value of θ
is exponentially zero. This follows from the fact that in the region of the smooth distributions
θ and η are related locally through the equation q(θ, η) = 0 and therefore must lie on the
stable branch of the nullcline of the equation for the activator [9–11]. In the case of the Gray–
Scott model this gives an especially simple relation: θ = 0. So, the equation for the smooth
distributions becomes

d2η

dx2
+ 1 − η = 0 (3.9)

with the boundary condition in the spike η(0) = 0 (to order ε) and η = ηh at infinity. This
immediately gives us the smooth distribution of η

η(x) = 1 − e−|x|. (3.10)

Let us scale the activator and the inhibitor according to equation (3.8) and introduce the
stretched variable ξ :

θ̃ = εθ η̃ = ε−1η ξ = x

ε
. (3.11)

Using these variables, after a little algebra we can write equations (3.1) and (3.2) as

θ̃ξξ + Aθ̃2η̃ − θ̃ = 0 (3.12)

η̃ξξ = A−1(θ̃ − θ̃ξξ ) (3.13)

where we kept only the leading terms. In this equation θ̃ξξ denotes the second derivative with
respect to ξ . Thus, the solution of equations (3.12) and (3.13) properly matched with the
smooth distribution, given by equation (3.10), will give the sharp distributions of the activator
and the inhibitor in the spike.

The matching of the sharp and the smooth distributions is performed by noting that,
according to equation (3.11), to order ε we have η = 0 and ηx ∼ 1 for ε � |x| � 1.
Therefore, it is the derivative of η obtained from the sharp distribution at |ξ | � 1 that must
coincide with that of the smooth distribution for |x| � 1. This condition is obtained by
imposing the boundary condition η̃ξ (±∞) = ±1 in equation (3.13) (see equation (3.10)). One
can obtain an integral representation of this boundary condition by integrating equation (3.13)
over ξ . Let us introduce the variables

θ̄ = θ̃

A
η̄ = η̃ +

θ̃

A
. (3.14)

Then, this integral condition takes the form∫ +∞

−∞
θ̄ dξ = 2|λ|−1/2 (3.15)
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where λ is a constant that should be equal to −1 (the reason for introducing this coefficient
will be explained in the following paragraph). In terms of the new variables equation (3.13)
becomes especially simple,

η̄ξξ = |λ|θ̄ (3.16)

where λ is the same constant. Note that equation (3.16) has an obvious symmetry which
allows us to add an arbitrary constant to η̄, so we can replace η̄ → η̄ + η̄s , where η̄ satisfies
the condition η̄(0) = η̄ξ (0) = 0 and thus is uniquely determined by θ̄ , and η̄s is an arbitrary
constant.

To analyse equations (3.12) and (3.13), it is convenient to rewrite them as a nonlinear
eigenvalue problem[

− d2

dξ 2
+ V (ξ)

]
θ̄ = λθ̄ (3.17)

V (ξ) = −A2θ̄ (η̄s + η̄ − θ̄ ) (3.18)

where η̄ is, in turn, related to θ̄ via equation (3.16). Then, since θ̄ is positive for all ξ and
therefore has no nodes, the solution in the form of the static spike AS will correspond to the
lowest bound state of the operator in equation (3.17) with λ = −1. The latter is achieved by
adjusting the value of η̄s .

The nonlinear eigenvalue problem given by equations (3.17) and (3.18) together with
equations (3.15) and (3.16) with fixed η̄s can be solved iteratively. Indeed, for a given potential
well V there is a unique eigenvalue λ and a unique eigenfunction θ̄ (up to normalization)
that correspond to the lowest bound state of the Schrödinger operator in equation (3.17).
Equation (3.15) gives a unique normalization for θ̄ , which then uniquely determines η̄ through
equation (3.16). Knowing the distributions θ̄ and η̄, one can then reconstruct the potential
V ′, thus defining an iterative map. It is convenient to think of the solutions of the nonlinear
eigenvalue problem as fixed points of this iterative map.

Observe that the nonlinear eigenvalue problem is invariant with respect to the following
transformation:

ξ → ξ

b
λ → b2λ A → bA (3.19)

where b is an arbitrary positive constant. It is clear that if one knows a solution of the nonlinear
eigenvalue problem with certain λ, one can obtain a solution of equations (3.12) and (3.13)
by simply using the symmetry transformation in equation (3.19) with b = |λ|−1/2, so there
is, in fact, a one-to-one correspondence between the solutions of the nonlinear eigenvalue
problem with arbitrary λ and its solution with λ = −1, which corresponds to the sharp
distributions.

Since we are interested in the lowest bound state whose eigenvalue is equal to −1, the
characteristic length scale of the variation of θ̄ and, according to equation (3.16), of η̄ and V

as well, is of the order of unity. Equation (3.15) fixes the normalization of θ̄ , so we must have
θ̄ ∼ 1. Note that in view of equation (3.16) and the fact that θ̄ ∼ 1, we must always have
η̄ ∼ 1.

Let us write the potential V in equations (3.17) and (3.18) as a sum of two parts:
V = V0 + V1, where

V0 = −A2θ̄ η̄s V1 = −A2θ̄ (η̄ − θ̄ ). (3.20)

From the qualitative form of η̃(ξ) (see, for example, equation (3.7)) it is easy to see that the
potential V0 has the form of a simple potential well, while V1 has the form of a double well
(see figure 3).



8902 C B Muratov and V V Osipov

Figure 3. Qualitative form of the potentials V0 and V1 from equations (3.20).

Figure 4. Dependence λ(η̄s ) for the one-dimensional static AS. Results of the numerical solution
of the nonlinear eigenvalue problem with A = 1.

In order for the operator in equation (3.17) to have the lowest bound state with λ = −1 the
potential V must have a depth of the order of unity. When A � 1, the function η̃(ξ) must be
chosen in such a way that it compensates for the small factor of A in equation (3.20). However,
since η̄ ∼ 1, this can only be achieved by choosing η̄s ∼ A−2 � 1. This means that we will
have V0 � V1. If one neglects V1 compared with V0, one can solve the nonlinear eigenvalue
problem exactly. This solution will be

θ̄ (ξ) = 1
2 cosh−2 (

1
2ξ

)
η̄s = 3

A2
. (3.21)

The potential V1 can then be treated as a perturbation which will give corrections to θ̄ and η̄,
so one should not expect any qualitative changes in the behaviour of the solution for A � 1.

In the other limiting case A � 1 the nonlinear eigenvalue problem will not have solutions
withλ = −1. Indeed, in this case the potentialV is always deep with a depth � A2 regardless of
the choice of η̄s , so the lowest eigenvalue of the operator in equation (3.17) will be |λ| ∼ A2 � 1
(assuming that V varies on a length scale of the order of unity). This means that the solution
in the form of the static spike AS exists only when A � 1. Note that this result was obtained
independently in [48] by the method of topological shooting.

The numerical solution of the nonlinear eigenvalue problem shows that for A = 1 and
arbitrary λ (recall that the solutions for all other values ofA can be obtained using the symmetry
transformation given by equation (3.19)) there exists a unique stable solution for all η̄s greater
than some critical value η̄∗

s (see figure 4). This can be explained in the following way. For large
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Figure 5. The values of (a) η̃(0) and (b) θ̃ (0) as functions of A for the one-dimensional AS obtained
from the numerical solution of equations (3.12) and (3.13).

enough values of η̄s the potential V0, which can always produce a localized state, dominates in
the total potential V . As the value of η̄s decreases, the effect of the potential V1 becomes more
and more pronounced, so V gradually transforms from a single-well to a double-well potential.
This means that with decreasing η̄s the function θ̄ will tend to localize in the minima of V1

instead of the minimum of V0 (see figure 3). On the other hand, the localization of θ̄ in the
minima of V1 will in turn increase V1, since the latter is self-consistently determined by θ̄ (see
equation (3.16)). If one constructs the solution of the nonlinear eigenvalue problem iteratively,
for small enough values of η̄s one will find that at each step of the iterations the potential V is
such that at the next step the distribution of θ̄ will become localized further and further away
from the origin. On the other hand, it is easy to show that there is no solution of the nonlinear
eigenvalue problem in the form of a pair of spikes some distance L � 1 apart. Suppose that
we have a solution in the form of two spikes centred at ξ = ±L/2, with L � 1. Let us
multiply equation (3.17) by θ̄ξ and integrate it over positive ξ . As a result, using the fact that
for L � 1 with exponential accuracy θ̄ (0) = 0, we obtain the relation A2

∫ ∞
0 θ̄3η̄ξ dξ = 0.

This relation, however, cannot be satisfied since the function η̄ξ is positive definite for all
positive ξ , so the solution of the assumed form does not exist. So, for η̄s < η̄∗

s the iterative
procedure will not converge and at η̄s = η̄∗

s the solution of the nonlinear eigenvalue problem
abruptly disappears.

From figure 4 one can see that λ is a monotonically decreasing function of η̄s , with its
maximum attained at η̄s = η̄∗

s � 2.40 for A = 1 (see figure 4). According to equation (3.19),
we have |λmax| = |λ(η̄∗

s )| = constant/A2. Therefore, at some A = Ad ∼ 1 we will have
λmax = −1, so that for A > Ad there will be no solutions corresponding to the one-dimensional
static spike AS. Thus, at A = Ad there is a bifurcation of the static spike AS which results in
the local breakdown and leads to its splitting and self-replication [47].

The numerical solution of equations (3.12) and (3.13) together with equation (3.15)
confirm our conclusions concerning the behaviour of the sharp distributions as the value of A
is varied. Figure 5 shows the dependences of the values of θ̃ and η̃ at ξ = 0 on A obtained
from the numerical solution of equations (3.12) and (3.13). From this figure one can see
that the solution indeed disappears at A = Ad with the value of Ad found to be Ad = 1.35.
Figure 6 shows the distributions of θ̃ and η̃ in the spike obtained from the numerical solution
of equations (3.12) and (3.13) for a particular value of A. It also shows the entire solution
obtained by matching the sharp and smooth distributions for the particular values of A and ε.
Note that the distributions given by equations (3.21) give a very good approximation to the
actual solution whenever A is not in the immediate vicinity of Ad (for example, at A < 0.8
these distributions give solutions with an accuracy of better than 10%).
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Figure 6. (a) Sharp distributions θ̃ (ξ) (full curve) and η̃(ξ) (broken curve) in a one-dimensional
static AS, obtained from the numerical solution of equations (3.12) and (3.13) with A = 1; (b) The
full solution for θ (full curve) and η (broken curve) at A = 1 and ε = 0.01.

3.3. Case ε1/2 � A � 1

Let us now consider the intermediate case ε1/2 � A � 1. In this case the results of sections 3.1
and 3.2 both predict for θ and η in the spike

θ(x) = A

2ε
cosh−2

( x

2ε

)
ηs = 3ε

A2
(3.22)

and the correction to η to be given by equation (3.7) with 4ε2θ2
mηs/3 = ε (see equations (3.5)

for A � ε1/2). Note that equations (3.22) were independently obtained in [46].
Observe that the procedure presented in section 3.2 is valid with accuracy ε when A ∼ 1.

For these values of A it is justified to assume in the matching condition that with this accuracy
η(0) = 0. As the value of A decreases, the actual value of η(0) ∼ ε/A2 grows, so the accuracy
of the above-mentioned approximation decreases, and at A ∼ ε1/2 ∼ Ab this approximation
becomes invalid. On the other hand, in the procedure discussed in section 3.1 the matching
condition uses the true value of η(0) ∼ 1 for A ∼ Ab, but neglects the variation of η in the
spike. The latter gives the corrections of the order of A2 to the solution given by equation (3.3),
which are of the order of ε when A ∼ Ab and grow as A increases. For A ∼ ε1/4 both of
these procedures give the same solutions with an accuracy of ε1/2, so, in fact, for ε � 1 one
can construct the solution in the form of the static spike AS asymptotically for all values of
A. When A � ε1/4, one should use the procedure described in section 3.1 and when A � ε1/4

one should use that of section 3.2.
Above we presented the ways to construct asymptotically the solution in the form of the

one-dimensional static spike AS. As such, these procedures should be good only for sufficiently
small values of ε � 1. According to the analysis above, this AS exists in a wide range
Ab < A < Ad with Ab ∼ ε1/2 � 1 and Ad ∼ 1. This implies that in order for the whole
asymptotic procedure to be in quantitative agreement with the actual solution we must have
Ab � Ad . In view of equation (3.6), this will be the case when ε � 0.03.

4. Three-dimensional radially symmetric static spike autosoliton

Let us now study higher-dimensional static spike ASs. These are radially symmetric spikes of
large amplitude and size of the order of ε [9–11]. As we will show below, in the Gray–Scott
model the properties of the solutions in the form of the higher-dimensional radially symmetric
spike ASs turn out to be different from those of the static spike AS in one dimension.
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Let us consider a three-dimensional AS first. The distributions of θ and η in the form of
the AS will be determined by equations (2.13) and (2.14) in which the time derivatives are set
to zero and only the radially symmetric part of the Laplacian is retained, with the spike centred
at zero. When ε � 1, one can once again use singular perturbation theory and separate the
sharp distributions (inner solutions) in the spike from the smooth distributions (outer solutions)
away from the spike.

As in the case of the one-dimensional AS, away from the spike the activator and the
inhibitor become decoupled, so that θ = 0 there and the smooth distribution of η is given by

η(r) = 1 − ae−r

r
(4.1)

where r is the radial coordinate and a is a certain constant (see equation (2.14)). The constant
a is determined by the strength of the δ-function-like source term at r = 0. Integrating
equations (2.13) and (2.14) over the spike region, we obtain that

a = 1

A

∫ ∞

0
r2θ(r) dr (4.2)

where the integration was extended to the whole space since θ = 0 away from the spike.
One can see an important difference between equation (4.1) and equation (3.10) for the one-
dimensional AS: in the case of the three-dimensional AS the derivative of η with respect to r

in the smooth distribution becomes singular at r = 0. This means that the scaling of θ and η in
the spike will be different from that of the one-dimensional AS. Indeed, for r ∼ ε the value of
η must be positive, so we must have a ∼ ε. According to equation (4.2), this implies that in the
spike θ ∼ Aε−2. Also, from equation (4.1) one can see that near the spike η varies by values
of the order of unity on the length scale of ε. Since we must have Aθ2η ∼ θ in equation (2.13)
in the spike region to have a solution, the scaling for the variables and the parameter A will be
the following:

θmax ∼ ε−1 ηmin ∼ 1 A ∼ ε. (4.3)

Introducing the scaled quantities and the stretched variable

θ̃ = εθ η̃ = η Ã = ε−1A ξ = r

ε
(4.4)

and retaining only the leading terms in equations (2.13) and (2.14), we can write the equations
describing the sharp distributions (inner solutions) of the activator and the inhibitor in the spike
as

d2θ̃

dξ 2
+

d − 1

ξ

dθ̃

dξ
+ Ãθ̃2η̃ − θ̃ = 0 (4.5)

d2η̃

dξ 2
+

d − 1

ξ

dη̃

dξ
− θ̃2η̃ = 0 (4.6)

with d = 3 (for generality we set an arbitrary dimensionality of space d in equations (4.5) and
(4.6)). The boundary conditions are neutral at ξ = 0, and zero for θ̃ at infinity. The precise
boundary condition for η̃ at infinity which ensures proper matching between the sharp and
smooth distributions has to be specified. To do this, we note that, according to equation (4.1),
to order ε we have η = 1 at r � ε (or ξ � 1). This means that the boundary condition for η̃
in equation (4.6) must be taken to be η̃(∞) = 1.

It is convenient to perform the following change of variables:

θ̃ = Ãθ̄

ξ
η̃ = η̄s +

η̄ − θ̄

ξ
(4.7)
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where we define η̄(0) = η̄ξ (0) = 0. Obviously, η̄s must satisfy 0 < η̄s < 1. In these variables,
we can write equation (4.5) in the form of the nonlinear eigenvalue problem[

− d2

dξ 2
+ V (ξ)

]
θ̄ = λθ̄ (4.8)

V (ξ) = − Ã2θ̄

ξ

(
η̄s +

η̄ − θ̄

ξ

)
(4.9)

and equation (4.6) as

η̄ξξ = |λ|θ̄ (4.10)

where we must have λ = −1 for the sharp distributions. The problem now has a one-
dimensional form similar to that in section 3, but is defined for ξ > 0, with zero boundary
condition for θ̄ at ξ = 0. As in the one-dimensional case, the solution that corresponds to
the AS must be the lowest bound state and have λ = −1. The latter is achieved by adjusting
the value of η̄s . Also, according to the definition of η̄, the matching condition η̃(∞) = 1
corresponds to the boundary condition η̄ξ (∞) = 1 − η̄s for equation (4.10). Integrating
equation (4.10) with λ = −1 over ξ , we transform it into an integral condition∫ ∞

0
θ̄ dξ = 1 − η̄s . (4.11)

This condition fixes the normalization of θ̄ .
It is possible to show that the nonlinear eigenvalue problem possesses a continuous

symmetry generated by

dξ

db
= −ξ

dλ

db
= 2λ

dη̄s

db
= 2η̄s(1 − η̄s)

dθ̄

db
= θ̄ (1 − 2η̄s)

(4.12)

dη̄

db
= η̄(1 − 2η̄s)

dÃ

db
= −Ã(1 − 2η̄s).

From these equations one can see that if there is a solution of the nonlinear eigenvalue problem
with certain η̄s , λ and A, there is also a solution with

λ′ = λ
η̄′
s(1 − η̄s)

η̄s(1 − η̄′
s)

Ã′ = Ã

[
η̄s(1 − η̄s)

η̄′
s(1 − η̄′

s)

]1/2

(4.13)

with η̄′
s arbitrary. Since λ′(η̄′

s) is a monotonic function of η̄′
s that goes from 0 to infinity as η̄′

s

changes from 0 to 1, for any η̄s it is always possible to choose a unique value of η̄′
s for which

λ′ = −1. So, as in the one-dimensional case, there is a one-to-one correspondence between
the solutions of the nonlinear eigenvalue problem with arbitrary λ and the sharp distributions.
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Figure 7. Dependence λ(η̄s ) for the three-dimensional radially symmetric AS. Results of the
numerical solution of the nonlinear eigenvalue problem for different values of Ã.

The potential V can be written as a sum of two parts: V = V0 + V1, where

V0 = − Ã2θ̄ η̄s

ξ
V1 = − Ã2θ̄ (η̄ − θ̄ )

ξ 2
. (4.14)

The qualitative form of these potentials for sufficiently small values of Ã coincides with that
shown in figure 3 for ξ > 0. According to equations (4.10) and (4.11), at these values of Ã

we have the following estimates for V0 and V1 when η̄s is close to either 1 or 0:

V0 ∼ −η̄s(1 − η̄s) V1 ∼ −(1 − η̄s)
2. (4.15)

In writing these estimates, we used the fact that the characteristic length scale of the variation
of θ̄ and η̄ is 1.

4.1. Case A ∼ ε: autosoliton collapse

For Ã ∼ 1, one can analyse the solutions of the nonlinear eigenvalue problem in the following
way. First of all, for sufficiently small values of Ã the potential V will be so shallow that there
will be no bound states in the eigenvalue problem at all. When the value of Ã is increased,
at some Ã = Ã0 the potential V will become capable of localizing a state at η̄s ∼ 1

2 (see
equation (4.15)). When the value of Ã is increased further, the minimum value of λ = λmin

will decrease, so that at some Ã = Ãb we will have λmin = −1 (see figure 7 in which the
numerical solution of the nonlinear eigenvalue problem for several values of Ã is shown).
For Ã > Ãb we will have λmin < −1, so there will be two values of η̄s at which λ = −1
(figure 7). Therefore, the solutions of the nonlinear eigenvalue problem with these values of
η̄s will correspond to the sharp distributions we are looking for. Thus, the solution in the form
of the three-dimensional static spike AS exists only for Ã > Ãb. From the numerical solution
of equations (4.5) and (4.6) we obtain that in this case Ãb = 5.8.

It is possible to show that the solution corresponding to the largest value of η̄s should be
unstable. Indeed, if the value of η̄s is decreased, we will have an increase in V1 and a decrease
in V0. Since V1 can localize θ̄ more easily than V0, a small decrease of η̄s will produce such
a deviation of θ̄ that will (through equations (4.10) and (4.14)) further distort the potential V
in the same manner. In other words, if we construct an iterative map that takes V , calculates
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the solution θ̄ of the eigenvalue problem, and then generates a new V by solving for η̄, it will
take us from the unstable solution with greater η̄s to the stable solution with lower η̄s if η̄s is
decreased at the start, or to the trivial solution θ̃ = 0 and η̃ = 1, which is obviously stable, if
the value of η̄s is increased. Thus, the solution corresponding to the stable radially symmetric
static AS should be unique.

4.2. Case A � ε: annulus

The numerical solution of equations (4.5) and (4.6) shows that for Ã not far from Ãb the
distribution of θ in the AS has the form of a spike centred at zero. As the value of Ã increases,
the shape of the AS changes. To see how the AS behaves as the value of Ã is increased, a special
treatment of the case Ã � 1 is needed. When Ã becomes large, the potential V contains a large
factor of Ã. This factor can be compensated by choosing, for example, 1 − η̄s ∼ Ã−2 � 1,
which will correspond to the unstable solution with larger η̄s . Alternatively, one could have
the potential V shifted along ξ , so that it is centred around ξ = R � 1. In other words, one
can look for sharp distributions in the form of an annulus of radius R. In that case the main
contribution to V will be given by V0 ∼ −Ã2/R for η̄s not close to either 0 or 1. Since θ̄

decays exponentially at large distances from ξ = R, for R � 1, the boundary conditions at
ξ = 0 become inessential and can be moved to minus infinity. In this case, if one neglects
the terms of the order of 1/R in the potential, one can solve the nonlinear eigenvalue problem
exactly. The solution will be given by

θ̄ = 1 − η̄s

4
cosh−2

(
ξ − R

2

)
(4.16)

with

R = A2η̄s(1 − η̄s)

6
. (4.17)

So far, we have obtained a continuous family of solutions parametrized by η̄s in the case
Ã � 1. This result may seem surprising, since for Ã ∼ 1 we showed that there should be only
one stable solution to the nonlinear eigenvalue problem. However, as we will show below,
all the solutions found in the preceding paragraph except for a single solution are, in fact,
structurally unstable, so the stable solution is indeed unique for Ã � 1.

The reason for the structural instability of the solutions with R � 1 is that in the limit
R → ∞ the problem possesses translational symmetry. As a result, for R � 1 there is a
degenerate mode corresponding to translations of the spike as a whole along ξ . One should
therefore study the stability of the solution with respect to that mode.

To analyse the stability of the solutions with R � 1, we need to calculate the 1/R
correction to the solution obtained above. Let us write equations (4.5) and (4.6) in a form that
is valid to order 1/R

θ̃ξξ + cθ̃ξ +
2θ̃ξ
R

+ Ãθ̃2η̃ − θ̃ = 0 (4.18)

η̃ξξ − η̄s θ̃
2 = 0 (4.19)

where for the solution sought we must have c = 0. We wrote equation (4.18) so that it is
reminiscent of an equation describing the solution travelling with constant speed c. In fact, if
one solves this problem for c as a function of R coupled to the equation dR/dt = c(R) and
equation (4.17), one should be able to describe slow variations of the radius of the annulus.
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We can use the expression for θ̄ obtained above to calculate the variation of η̃ in the spike.
Integrating equation (4.19) with θ̃ from equation (4.16) and using the boundary condition
η̃ξ (−∞) = 0, we obtain

η̃ = η̄s +
1 − η̄s

2R

(
2 ln cosh

ξ − R

2
+

1

2
tanh2 ξ − R

2
+ ξ − R

)
. (4.20)

Substituting this expression for η̃ into equation (4.18), multiplying it by θ̃ξ , and integrating
over ξ , for η̄s < 1

2 we obtain the following expression for c:

c = 1

Ã2


−2Ã2

R
+

12

1 − 12R/Ã2 −
√

1 − 24R/Ã2


. (4.21)

In writing this equation we assumed the relationship between η̄s and R from equation (4.17).
The analysis of equation (4.21) shows that we have c = 0 only for R = R∗ (and η̄s = η̄∗

s ),
where

R∗ = 1
27 Ã

2 η̄∗
s = 1

3 . (4.22)

Thus, the corrections of the order of 1/R destroy the solutions with R �= R∗.
Consider the flow generated by the equation dR/dt = c(R). The behaviour of this flow

near the fixed point R = R∗ should determine the stability of the solution. According to
equation (4.21), we have c > 0 for R < R∗ and c < 0 for R > R∗, so the flow is into the fixed
point. Therefore, the solution with R = R∗ is stable. One can also write an equation similar
to equation (4.21) in the case η̄s > 1

2 , which corresponds to another branch of the solutions
obtained above. The analysis of this equation shows that for those solutions c < 0 for all
η̄s , so the flow transforms the solution into the trivial solution θ̃ = 0. Thus, the solution that
corresponds to the radially symmetric static AS is indeed unique even for Ã � 1.

4.3. Comparison of the two cases

From the arguments given above it is clear that when the value of Ã is increased from Ãb ∼ 1
to Ã � 1, the solution in the form of the AS should gradually transform from a spike to
an annulus of large radius R ∼ Ã2. This is what we see from the numerical solution of
equations (4.5) and (4.6). Figure 8 shows the dependence η̃(0) and θ̃ (0) as a function of Ã in
the radially symmetric AS obtained from this solution. From this figure one can see that η̃(0)

Figure 8. The values of (a) η̃(0) and (b) θ̃ (0) as functions of Ã for the three-dimensional radially
symmetric AS obtained from the numerical solution of equations (4.5) and (4.6).
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Figure 9. (a) Sharp distributions θ̃ (ξ) (full curve) and η̃(ξ) (broken curve) in a three-dimensional
radially symmetric static AS, obtained from the numerical solution of equations (4.5) and (4.6)
with Ã = 10; (b) construction of the full solution for θ (full curve) and η (broken curve) at A = 0.1
and ε = 0.01.

indeed approaches η̄∗
s = 1

3 as Ã increases. The dependence of the radius of the annulus was

also found to be in good agreement with equation (4.22) for large values of Ã.
Figure 9 shows the distributions of θ̃ and η̃ in the radially symmetric three-dimensional

AS for a particular value of Ã which is intermediate between the spike and the annulus. This
figure also shows the entire solution in the form of an AS obtained by matching the sharp and
the smooth distributions for the particular values of A and ε.

So far we have studied the situations whenR � 1 but still smaller than the inhibitor length,
which in these units is of the order of ε−1. When R reaches this value, equations (4.5) and (4.6)
will no longer be justified for the description of the distributions of θ and η in the annulus.
In the unscaled variables this will happen when A ∼ ε1/2 ∼ A

(1)
b (see equation (4.22)),

where A
(1)
b is the minimum value of A at which the one-dimensional static AS exists (see

section 3.1). At these values of A the radially symmetric AS can effectively be considered as
a one-dimensional AS, so when A reaches some value Ad ∼ ε1/2, the solution in the form of
an annulus will transform into a quasi-one-dimensional AS of infinite radius. Note, however,
that this bifurcation point is essentially different from the bifurcation at A = Ad of the one-
dimensional AS (section 3.2) in that it does not involve local breakdown or splitting of the
AS.

5. Two-dimensional static spike autosoliton

Let us now turn to the two-dimensional case. The analysis of the two-dimensional radially
symmetric static AS turns out to be analogous to that of the three-dimensional AS, so we will
not go into much detail here, but will only give the main results.

As in the case of the three-dimensional AS, away from the spike θ = 0, the distribution
of η is given by

η(r) = 1 − aK0(r) (5.1)

where K0 is the modified Bessel function, r is the radial coordinate and a is a certain constant.
The value of a is determined by integrating equations (2.13) and (2.14) with the time derivatives
set to zero over the spike region. In two dimensions a is given by

a = 1

A

∫
rθ(r) dr. (5.2)
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According to equation (5.1), when r becomes of the order of ε, we have

η � 1 − a ln ε−1 + a ln(r/ε). (5.3)

In order for η to remain positive, we must have a ∼ 1/ ln ε−1. Then, on the length scales of ε
the variation of η in the spike will be of the order of a � 1. In the same way as in the case of
the three-dimensional AS, this results in the following scaling for the main parameters of the
AS:

θmax ∼ ε−1 ηmin ∼ 1

ln ε−1
A ∼ ε ln ε−1. (5.4)

In the scaled variables

θ̃ = εθ η̃ = η ln ε−1 Ã = A

ε ln ε−1
ξ = r

ε
(5.5)

the equations for the sharp distributions in the spike will take the form of equations (4.5) and
(4.6) with d = 2. Since the variation of η in the spike is of the order of 1/ ln ε−1, according to
equation (5.3) we must have a = 1/ ln ε−1 in the limit ε → 0. This gives us the condition for
matching the sharp and the smooth distributions. Let us introduce the variables

θ̄ = Ã−1θ̃ η̄ = η̃ + Ã−1θ̃ − η̄s (5.6)

where η̄s is a constant that is chosen so that η̄(0) = 0. Then, the matching condition can be
written in the integral form as∫ ∞

0
θ̄ ξ dξ = |λ|−1 (5.7)

where λ is a constant that must be equal to –1. Also, in terms of the new variables the equation
for the sharp distribution of η̄ can be written as

1

ξ

d

dξ

(
ξ

dη̄

dξ

)
= |λ|θ̄ (5.8)

with η̄ξ (0) = 0.
As with the three-dimensional AS, in two dimensions the problem of finding the sharp

distributions can be written as a nonlinear eigenvalue problem

−1

ξ

d

dξ

(
ξ

dθ̄

dξ

)
+ V (ξ)θ̄ = λθ̄ (5.9)

V (ξ) = −Ã2θ̄ (η̄s + η̄ − θ̄ ) (5.10)

with the potential V that can be separated as V = V0 + V1, where

V0 = −Ã2θ̄ η̄s V1 = −Ã2θ̄ (η̄ − θ̄ ). (5.11)

These potentials have the form shown in figure 3 for ξ > 0. The lowest bound state with
λ = −1 will give us the solution we are looking for. This condition is achieved by adjusting
the value of η̄s . The nonlinear eigenvalue problem is invariant with respect to the transformation
given by equation (3.19).

When Ã � 1, the potential V acquires a small factor (as in the case of the one-dimensional
AS), which can be compensated only by choosing η̄s ∼ Ã−2 � 1. Therefore, the potential V
will be dominated by V0 which can always localize a bound state with λ = −1. Note, however,
that in order for the approximations made to derive the equations for the sharp distributions
to remain valid, we must have η̄s � ln ε−1, so, in fact, this argument is valid only down to
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Figure 10. The values of (a) η̃(0) and (b) θ̃ (0) as functions of Ã for the two-dimensional radially
symmetric AS obtained from the numerical solution of equations (4.5) and (4.6).

Figure 11. Sharp distributions (a) θ̃ (ξ) and (b) η̃(ξ) in a two-dimensional radially symmetric static
AS, obtained from the numerical solution of equations (4.5) and (4.6) with Ã = 5.

Ã ∼ (ln ε−1)−1/2. It is easy to show that, similarly to the one- and three-dimensional cases,
the solution in the form of the two-dimensional AS will disappear at A < Ab ∼ ε(ln ε−1)1/2.

At Ã sufficiently small, the AS looks like a spike with the maximum value of θ̃ centred
at ξ = 0. As in the case of the three-dimensional AS, when the value of A is increased,
the AS gradually transforms into an annulus of radius R, which grows with Ã. According
to equation (5.7), when R increases, we have θ̄ ∼ R−1 � 1 and η̄ ∼ θ̄ , so the potential
V0 ∼ Ã2/R starts to dominate. An analysis similar to that for the three-dimensional AS shows
that for Ã � 1 the parameters of the AS are given by

R∗ = 1
6 Ã

2 η̄∗
s = 1. (5.12)

These results are also supported by the numerical solution of the equations for the sharp
distributions. The dependences of η̃(0) and θ̃ (0) on Ã are presented in figure 10. The solution
of equations (4.5) and (4.6) in the form of the two-dimensional radially symmetric static spike
AS at a particular value of Ã is also presented in figure 11. Of course, when R ∼ ε−1, the
approximations made in the derivation of the equations for the sharp distributions are no longer
valid, so, as in the case of the three-dimensional radially symmetric AS, the two-dimensional
radially symmetric AS of radius R∗ will transform into a quasi-one-dimensional AS of infinite
radius. According to equation (5.12), this will happen when A > Ad ∼ ε1/2 ln ε−1.

Finally, we note that the small parameter of the singular perturbation expansion in the two-
dimensional case turned out to be 1/ ln ε−1, so one should expect it to give a good quantitative
agreement with the actual solutions only for extremely small values of ε. Nevertheless, the
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leading scaling given by equation (5.4) (up to the logarithmic terms) should be in good
agreement even for not very small ε. Also, it is not difficult to modify the theory in such
a way that it uses ε as a small parameter in the expansion. In that case the sharp distributions
will contain a weak logarithmic dependence on ε.

6. Discussion

While the work on this paper was being done, a number of publications on the Gray–Scott
model appeared in the literature. The publications that are most relevant to our analysis are
those of [45, 46]. Let us also mention a paper conceerning spike solutions in the Gray–Scott
model on a finite domain [49].

In [46] Doelman et al present an asymptotic study of the static ASs and periodic strata
in the one-dimensional Gray–Scott model. They perform a singular perturbation analysis of
the localized and spatially periodic stationary solutions in a limited region of the parameter
space. Doelman et al do not use the natural scaling of the Gray–Scott model given by
equations (2.13) and (2.14). Instead, they introduce dimensionless quantities such that the
original equations (2.3) and (2.4) become (we use the notation of [48])

∂U

∂t
= ∂2U

∂x2
− UV 2 + δ2a(1 − U) (6.1)

∂V

∂t
= δ2 ∂

2V

∂x2
+ UV 2 − δβbV (6.2)

where U is the inhibitor, V is the activator, δ is the small parameter, a and b are constants of
the order of one, and β (= 2α/3 from [46]) is a parameter that lies in the interval from zero
to one. The solutions are studied in the limit δ → 0. It is easy to see that equations (6.1) and
(6.2) can be reduced to equations (2.13) and (2.14) with

ε = δ(4−β)/2

√
a

b
α = δ2−β a

b
A = δ1−β

√
a

b
. (6.3)

Observe that the scaling in equations (6.1) and (6.2) forces certain relations between the
parameters ε, α and A, so, in fact, such a choice of scaling significantly restricts the parameter
space studied by Doelman et al.

According to the results of [46], the static one-dimensional AS exists when β ∈ [0, 1) as
δ → 0. This statement is based on the fact that the coefficient in front of the last term on the
right-hand side of equation (6.1) scales as δ2. On the other hand, as we showed in section 3,
this AS in fact exists over a wider range of the parameters as long as ε � 1, so, in fact, such a
scaling is not a necessary condition for the AS existence.

The case β = 0 is equivalent to A ∼ Ab in our notation. Our result that the solution
exists only at A > Ab = √

12ε is in agreement with the result of [46] that the solution exists
at a > 144b3. Note that the analogous method of finding Ab for the ASs in systems of small
size was introduced two decades ago by Kerner and Osipov [16]. There they performed an
analysis of a very similar model—the Brusselator. The results obtained by them at A ∼ Ab

for the Brusselator differ from those presented in our paper only by numerical coefficients.
A calculation similar to that of section 3.1 was performed by Dubitskii et al for the Gierer–
Meinhardt model [36] (see also [11]). Osipov and Severtsev also performed such an analysis
for a simplified version of the Gray–Scott model, which is also very similar to the results of
the first part of section 3 [39]. The advantage of the method of Doelman et al, however, is that
it rigorously shows the existence of the static spike AS for Ab � A � 1 and ε � 1.
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The case 0 < β < 1 is equivalent to that considered by us in section 3.3. The leading-
order approximation to the solution obtained by Doelman et al is in agreement with the one
obtained in equation (3.22) of our paper. The case β = 1 is equivalent to our A ∼ 1. In [48],
Doelman et al used topological shooting to show that the solutions do not exist for δ1−β � 1.
This is in agreement with the results of section 3.2 of our paper that the static spike ASs do not
exist for A � 1. We, on the other hand, used the nonlinear eigenvalue problem to study the
solutions at A ∼ 1 and, furthermore, showed that the solution disappears at A = Ad = 1.35
in the limit ε → 0.

Reynolds, Ponce-Dawson and Pearson derived an asymptotic equation of motion for the
spike AS in the Gray–Scott model with A ∼ 1, α ∼ 1 and ε � 1 (in our notation). The
reason the AS moves is its interaction with the boundary. These equations also describe the
static spike AS. For A > Ad the peculiarities of the internal dynamics result in the breakdown
of the asymptotic description which the authors attribute to splitting and self-replication of
the AS. The equations obtained by the authors for the inner region, in fact, coincide with
equations (3.12) and (3.13) obtained by us in section 3.2 in the case of the static spike AS.
They also found the value of Ad which agrees with the one obtained by us.

Finally, we mention recent studies by Hale et al [50]. They found exact solutions in the
form of solitary pulses and fronts, and analysed their stability in the Gray–Scott model with
ε = 1 and α = ε2. For these ε and α one can introduce the new variables θ̃ = θ/A and
η̃ = η + (ε2/A)θ which turn out to be decoupled; so the dynamics of the system is described
by a scalar reaction–diffusion equation [47]. It is then not surprising that the behaviour of the
system remains the same if ε is close to, but not exactly equal to 1 [50].

7. Conclusion

In conclusion, we performed an asymptotic analysis of the static spike ASs—self-sustained
localized inhomogeneous states—in the Gray–Scott model of an autocatalytic chemical
reaction. We showed that the solutions in the form of the static autosolitons exist in certain
parameter regions when the ratio ε of the characteristic length scales of the activator and the
inhibitor is small. These solutions have the form of narrow spikes of the concentration of the
activator substance.

In one dimension, the static spike ASs exist over a broad range Ab < A < Ad , with
Ab ∼ ε1/2 and Ad ∼ 1, with large amplitude θmax ∼ Aε−1 (section 3). When the value of
A approaches Ab from above, the amplitude of the AS decreases and at A = Ab the solution
abruptly disappears. On the other hand, when the value of A approaches Ad from below, the
distribution of the activator in the spike flattens, until at A = Ad the AS splits into two with
the consecutive self-replication of the newborn spots [45, 47]. Note that even for A close to
Ab ∼ ε1/2 � 1, that is, in such a weakly non-equilibrium system, the AS can have a gigantic
amplitude of the order of ε−1/2 � 1.

In contrast to the one-dimensional case in which the static spike ASs exist over a wide
range of the parameter A, in three dimensions the region of existence of the static radially
symmetric spike AS is substantially narrower. Indeed, as we showed in section 4, the static
three-dimensional radially symmetric AS exists when Ab < A < Ad , when now Ab ∼ ε and
Ad ∼ ε1/2. The maximum value of the activator in the AS is also large: θmax ∼ ε−1. As in
the case of the one-dimensional AS, when the value of A is decreased, at A = Ab the solution
in the form of the static three-dimensional radially symmetric spike AS abruptly disappears.
When the value of A is increased, the AS gradually transforms from the spike to an annulus.
Note that the solution in the form of the annulus is always unstable with respect to the radially
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nonsymmetric breakup [47], so the static radially symmetric ASs are realized only at A ∼ ε

in three dimensions. Similar conclusions can also be made concerning the static spike ASs in
two dimensions. In this case Ab ∼ ε(log ε−1)1/2 and Ad ∼ ε1/2 log ε−1.
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